NovoCyte Support


NovoCyte Instrument

Any cell or particle in size from 0.2-50 µm can be assayed on the system.

The NovoCyte is available in four different models which have 1, 2, or 3 lasers and from 3 to 13 fluorescence channels.

Innovations in the optical layout, electronic signal processing and the obscuration bar design result in high sensitivity and resolution for both scattered light signals and fluorescence signals:
Forward/side scatter resolution: FSC: 0.5 µm; SSC: 0.2 µm
Fluorescence sensitivity: FITC < 75 MESF; PE < 50 MESF

<3% CV for chicken erythrocyte nuclei DNA content analysis.

The sample flow rate can be adjusted continuously in the range of 5-120 µL/min. The maximum sample processing rate is 35,000 events per second.

The flow core diameter can be varied 4.6 to 22.7µm, corresponding to the flow rate range of 5 to 120 µL/min. The software indicates the altered flow core diameter as you modify the flow rate.

The NovoCyte is able to record up to 10 million events (either total or within a gate of interest), up to 5 mL of sample volume, and/or up to 120 min for each sample acquisition.

The syringe pump aspirates from 10 to 100 µL for each sample acquired plus 20 µL of void volume.

The NovoCyte uses advanced electronics and data processing algorithms to provide 7 decades of dynamic range. This high dynamic range eliminates the need for laborious PMT adjustment before each experiment.

Startup and shutdown cleaning routines are performed automatically, eliminating the need for time-consuming manual cleaning or decontamination protocols.
Also, the NovoCyte utilizes sensors in the fluidic pathway to monitor the system status in real time. Abnormal working conditions are reported on the NovoExpress software and one-click automated procedures can be executed, including routines that will backflush, debubble, unclog, prime, rinse, or clean the fluidics system.
Finally, fluidics system filters and tubing components may easily be changed on a recommended schedule (bi-monthly or bi-yearly, depending on the component) using kits available from ACEA.

No. The NovoCyte can do direct absolute counting with no need for expensive reference counting beads. The high precision syringe pump guarantees an accurate volume of sample is dispensed.

The precision of the direct absolute counting is < 5% CV.

The sample injection probe (SIP) is washed automatically after each sample collection, minimizing the possibility of sample carryover (<0.1%).

All of the necessary reagents to QC and run the instrument are available from ACEA, including NovoCyte Instrument QC Particles, NovoFlow sheath fluid, NovoRinse solution and NovoClean solution.

The sheath fluid consumption rate is 6.25 mL/min.

• NovoCyte: W × D × H: 60 × 45 × 39 cm (23.6 × 17.7 × 15.4 in.)
• Fluidics Station (including reagent containers): W × D × H: 25 × 29 × 42 cm (10.0 ×11.4 × 16.5 in.)
• NovoSampler: W × D × H: 31 × 26 × 28 cm (12.2 ×10.2 × 11.0 in.)

Instrument QC

The NovoExpress software includes an automatic QC function. Just prepare the QC beads and click the QC test button on the NovoExpress software. A QC report is automatically generated and the results are displayed after about 2 minutes. A Levey-Jennings plot for the mean and CV of specific parameters is provided to track the performance of the instrument over time. This simple procedure may be done on a daily basis.

NovoExpress Software

The NovoExpress software contains all the tools you expect for collecting and analyzing your flow data, including a variety of plot types (dot, density [grey or pseudo-color], contour, and histograms). In addition, a drag-and-drop software templating function allows for rapid application of settings and analysis across multiple samples. A built-in cell cycle analysis function (Watson pragmatic model with customizable constraints) eliminates the need for third party software.

The NovoCyte is a digital system, allowing for compensation after data acquisition. The NovoExpress software allows for direct editing of the compensation matrix as well as a simple-to-use Quick Compensation sliding bar to quickly achieve proper compensation. Also, NovoExpress provides an Auto Compensation function: after collection of data for single-stained samples, the software automatically calculates the compensation matrix for you.

The NovoExpress software generates .ncf files by default. It includes the data, compensation matrix, acquisition settings and analysis templates.

Yes, NovoCyte data may be exported in FSC3.0 format for analysis on third party software such as FlowJo. Also, NovoCyte data may be exported as a CSV file for analysis with programs such as Microsoft Excel.

Yes, the NovoExpress software is able to import and analyze FCS3.0 files.

Yes.  Simply right click on a dot plot/histogram, select “edit overlays”, and then choose the sample or gate of interest.

Yes, the NovoExpress software is provided with a cell cycle module based on the Watson pragmatic model. To use it, just click on the corresponding icon on the tool bar.

Autosampler / NovoSampler

The optional NovoSampler allows for use of standard 24- or 96-well microtiter plates (U/V/flat-bottom) as well as a 24 tube rack (provided by ACEA) for use with standard 12X75 mm tubes. The modular design of the NovoCyte autosampler allows for convenient installation and calibration without the need for special tools.

A 96 well plate can be processed automatically in less than 60 minutes, using a 10 uL acquisition volume from each well.

Yes. Mixing is performed by agitating the plate using customizable, user-def cycles.

A user-defined rinse program (0-3 cycles) for cleaning the fluidic system and the sample injection probe ensures that carryover is negligible (<0.1% with 1 rinse cycle per well).

Application Notes

Videos: Product Overviews

Videos: Research Presentations

WEBINAR – Flow Cytometry: Emerging Instrumentation and Application Trends | Wed, Feb 15, 2017Flow cytometry remains an essential tool for cell analysis. Although often relegated to specialized core facilities, flow cytometry instruments are in fact becoming increasingly commonplace in life science labs. In this special webinar, viewers will have the chance to learn about recent developments in flow cytometry technology, including the emergence of lower cost, smaller flow cytometry options with the capability of analyzing multiple fluorescent colors. Our speakers will explore ... Read More

Watch Now

Flow cytometry remains an essential tool for cell analysis. Although often relegated to specialized core facilities, flow cytometry instruments are in fact becoming increasingly commonplace in life science labs.

In this special webinar, viewers will have the chance to learn about recent developments in flow cytometry technology, including the emergence of lower cost, smaller flow cytometry options with the capability of analyzing multiple fluorescent colors. Our speakers will explore the design, development, and uses for smaller, more cost-effective flow cytometry systems in research labs. In this webinar, you will gain insights on:

  • Design and development of the latest multicolor flow cytometry instruments
  • Application of flow cytometry techniques for different experimental needs
  • How analyzing multiple cellular parameters using different  fluorescent colors can extend experimental possibilities
  • How to effectively analyze and interpret your flow cytometry data sets

In addition, you will also be able to ask the speakers your own specific questions on flow cytometry during a live question-and-answer session.

Learn More about the NovoCyte Flow Cytometer       Click here

Speakers:

Paul K. Wallace, PhD
Roswell Park Cancer Institute
Paul Wallace has served since 2003 as Director of the Flow and Image Cytometry Department at the Roswell Park Cancer Institute (RPCI) in Buffalo, NY, where he is a Professor of Oncology. He is also an Associate Professor of Biotechnical and Clinical Laboratory Sciences at the University at Buffalo. His primary expertise and board certification is in the flow cytometric diagnosis of hematological malignancies.

Christopher Groves 
MedImmune, Inc. 
Christopher Groves is a Senior Manager at MedImmune Inc., where he heads a keystone technology group  challenged with expanding knowledge of disease mechanisms while also delivering innovative solutions in drug discovery and manufacturing that provide scientists access to cutting-edge technological capability.

William Telford, PhD 
Experimental Transplantation and Immunology Branch, NCI-NIH 
William Telford is the Head of the NCI-NIH Flow Cytometry core facility, which provides state-of-the-art flow cytometry as well as imaging technology and instrumentation to users in the research community.

Moderator:

Patrick C.H. Lo, PhD 
Senior Editor, BioTechniques